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Abstract 

Approaches for modeling responses to multiple-choice items fall into two broad 

categories: (a) those that group all distractor options into a single incorrect response 

category and model the probability of correct response using a dichotomous response 

model, and (b) those that retain the distinction between all response options and model 

the probability of each response option using a polytomous response model. A recently 

developed polytomous model for multiple-choice items is Revuelta’s (2005) generalized 

distractor rejection model (DLT). A drawback of the DLT is that it is parameterized using 

a form that is inconsistent with many widely used response models in educational 

measurement. In this paper we propose an adaptation of the DLT called the distractor 

model (DM). The DM uses a parameterization that is consistent with that of other widely 

used response models in educational measurement, and thus may be more accessible and 

intuitive for applied test developers than the original form of the DLT.  We present the 

derivation of the DM, its relationship to the parameterization of the DLT, and describe 

the relationship of the DM to other polytomous response models for multiple-choice 

items. In addition, we illustrate the use of the DM by applying it to responses to an 

algebra test composed of multiple-choice items. 

 

Index terms: item response theory, polytomous models, multiple-choice items 
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A New Response Model for Multiple-Choice Items 

 Multiple-choice items are a widely used item format in tests of achievement, 

knowledge, and ability (Osterlind, 1998). The multiple-choice item format has the 

defining property of having one option (i.e., the key) designated as the correct response, 

and all other options designated as distractors or incorrect responses.  Numerous response 

models for multiple-choice item formats have been proposed, and these models can be 

grouped into two broad categories: dichotomous and polytomous. Dichotomous models 

treat the item response as a binary variable by collapsing all distractors into a single 

category of incorrect response, and specifying the probability of correct response as a 

function of the latent trait. Dichotomous response models include, but are not limited to, 

the Rasch model (Rasch, 1960) and the one-, two-, and three-parameter logistic models 

(Birnbaum, 1968; Lord, 1980). In contrast to dichotomous models, polytomous response 

models retain the distinction between all response options, and specify the probability of 

each possible response option as a function of the latent trait.  

The advantage of using a polytomous model for multiple-choice items stems from 

the potential of extracting information from the distractors as well as the correct response. 

The incorporation of information pertaining to each of the distractors maximizes the 

information concerning the latent trait, and thus has the potential to lead to more precise 

estimation of the latent trait than the dichotomous response models, particularly at the 

lower end of the latent trait continuum (Bock, 1972; De Ayala, 1989, 1992; Thissen, 

1976). Polytomous models, however, contain a higher number of parameters than their 

dichotomous counterparts, and thus require greater sample sizes to be effectively 

implemented (De Ayala & Sava-Bolesta, 1999; DeMars, 2003).   
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Several polytomous response models for multiple-choice items have been 

proposed. The most widely used of these models is the nominal response model (NRM; 

Bock, 1972). To describe the NRM, let us consider a multiple-choice item with m 

outcomes, of which m – 1 are distractor options. Let the response options be denoted by 

k, where k = 1, …, m. Let us denote the response variable for the jth item by Yj, such that 

a response equal to the kth option is denoted by the outcome Yj = k. Based on this 

formulization, the NRM specifies the probability of observing response option k of the jth 

item conditional on target trait, θ, by 
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In Equation 1, bjk is a location parameter associated with the kth response option and ajk is 

the slope parameter associated with the kth response option. In applying the NRM to 

multiple-choice items, the option with the largest positive value of ajk will be 

monotonically increasing, and thus this option corresponds to the correct option. In order 

for the model to be identifiable, the following constraints are imposed: �bjk = 0 and �ajk 

= 0. As a result, the NRM has 2(m-1) free parameters. 

 To aid in the description of the model, let us assume that option k m=  is reserved 

for the correct option, and 1,2, , 1k m= −�  corresponds to the remaining options (i.e., the 

distractors). Thus, jY m=  corresponds to a correct response. It is relevant to note that the 

NRM form presented in Equation 1 is based on the assumption that an individual 

presented with the choice between the correct option and the kth distractor will select the 

kth distractor with probability  



The Distractor Model 5 

)exp(1

)exp(
) ,,|( **

**

�ab

�ab
mkYkYP

jkjk

jkjk
jj ++

+
=== θ     (2) 

for k ≠ m, and mkjk aaa −=*  and mkjk bbb −=* . A proof of the form shown in Equation 2 

is provided in the Appendix. The form shown in Equation 2 will be referred to here as the 

kth contrast function, and is equivalent to the two-parameter logistic function commonly 

employed for dichotomously scored items (Lord, 1980). That is, the probability of 

selecting the kth distractor given the choice between the correct option and the kth 

distractor is assumed to follow the two-parameter logistic model shown in Equation 2. 

This model has lower and upper asymptotes of 0 and 1, which has important implications 

for the fit of the NRM to real multiple-choice response data (discussed below) and for the 

development of the DM as an alternative to the NRM for modeling multiple-choice item 

responses. 

 While the NRM provides a flexible mechanism for modeling response data, it has 

a theoretical limitation in its application to multiple-response items. Under the NRM, the 

option having the most negative ajk is modeled with a trace line that is monotonically 

decreasing, having lower and upper asymptotes of 0 and 1. This poses a problem because 

it assumes that a respondent with an arbitrarily low level of θ will have a near zero 

probability of selecting any option other than the option with the most negative aij.  This 

contradicts our intuitive notion of guessing, whereby an individual with an arbitrarily low 

level of θ would guess at the correct response, and thus could have a meaningfully non-

zero probability of selecting any of the response options. As a result, the NRM may 

experience poor fit to the responses of some items, particularly at the lower end of the θ 

continuum. We acknowledge that while it is possible for the NRM to fit actual multiple-
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choice response data well within a specific range of θ (depending on the specific 

parameter values of the NRM), the NRM itself provides no inherent mechanism to model 

guessing at the lower range of θ. 

 To address the limitations of the NRM to model guessing in the multiple-choice 

item responses, a multiple-choice model (MCM) was proposed by Thissen and Steinberg 

(1984). The MCM is an extension of the NRM in which a latent “don’t know” category is 

included in the model. As such, the MCM contains m + 1 response categories, denoted by 

k = 0, 1, …, m, whereby category k = 0 corresponds to the “don’t know” category.  The 

probability belonging to the “don’t know” category given a selection of the kth observed 

score category is captured by a separate parameter, djk. The conditional probability of 

selecting the kth response option is given by 
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Because the djk parameters represent a set of proportions, they have the constraint �djk = 

1. Unlike the NRM model, which contains 2(m – 1) free parameters, this version of the 

MCM has 3m – 1 free parameters. A restricted version of the MCM was proposed by 

Samejima (1979) in which djk was set equal to the constant value of 1/m, representing the 

situation of equal guessing across the observed response options. Samejima’s restricted 

version of the MCM contains 2m free parameters. 

 Recently, Revuleta (2005) proposed an alternative polytomous response model for 

multiple-choice items called the generalized distractor rejection model (DLT). The DLT 

is based on a contrast function that differs from that of the NRM (see Equation 2). Rather 

than defining the contrast function using P(Yj = k|Yj = k, m) = P(Yj = k)/[ P(Yj = k)+ P(Yj = 
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m)], the DLT is predicated on a contrast function of P(Yj = m)/P(Yj = k), which 

corresponds to the odds of selecting the correct option given the choice between the 

correct option and the kth distractor. In the description of the DLT, this contrast function 

is referred to as the distractor selection ratio. Note that the kth contrast function of the 

NRM describes the probability of selecting the kth distractor given the option between 

the kth distractor and the correct response, and the kth distractor selection ratio describes 

the odds of selecting the correct response given the option between the kth distractor and 

the correct response. The kth distractor selection ratio is modeled using 
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where bjk corresponds to the location of the jth distractor, ajk corresponds to the 

discrimination of the kth distractor, and �jk corresponds to the probability of selecting the 

kth response option as � � -� (i.e., the parameter �jk reflects the probability of selecting 

the kth response option for an individual with an arbitrarily low level of θ). Using this 

parameterization for the kth distractor selection ratio, the DLT posits the probability of 

selecting the kth response option using 
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The details of the derivation of the DLT can be found in Revuelta (2005).  
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Two noteworthy properties of the DLT are: (a) the number of free parameters to 

be estimated for each item is equal to 3(m – 1), which is fewer than that of Thissen and 

Steinberg’s (1984) MCM; and (b) the value of �jk can be interpreted directly with respect 

to the guessing attractiveness of each response option (i.e., �jk equals the probability of 

the kth response option being selected by an individual with an arbitrarily low level of θ).  

It is relevant to note, however, that the parameterizations of the DLT and NRM 

are based on different models. The parameterization of the NRM is founded on modeling 

the probability of selecting the kth distractor given the choice between the kth distractor 

and the correct response using the contrast function described in Equation 2. In contrast, 

the parameterization of the DLT is founded on modeling the odds of selecting the correct 

response versus the kth distractor using the distractor selection ratio described in 

Equation 4. As a result, the NRM and DLTM hold different interpretations of the location 

(bjk and βjk) and discrimination (ajk and �jk) parameters. Given the widespread use of the 

NRM, the inconsistency of the DLT’s parameterization with that of the NRM poses a 

potential obstacle to the interpretation and utilization of the DLT. In addition, the DLT 

defines �jk, βjk, and πjk according to different functions; �jk and βjk are defined according 

to the distractor selection ratio model while πjk is defined according to the option 

response functions of the DLT. That is, �jk and βjk are interpreted with respect to the odds 

of selecting the correct response given the choice between the correct response and the 

distractor in question, while πjk is interpreted with respect to the probability of selecting 

the particular response options for an individual with an arbitrarily low value of θ.  As a 

result of these drawbacks, interpretation of the DLT parameters is hampered, particularly 
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with respect to understanding the relationship between the parameters of the DLT and 

those of the NRM. 

In this paper we propose an alternative parameterization of the DLT that is 

consistent with widely used item response models. The alternative parameterization will 

be referred to as the distractor model (DM), in an effort to distinguish it from the 

parameterization used in the DLT. Because the parameterization of the DM is consistent 

with widely used response models, it may facilitate the use and understanding of the 

model relative to the parameterization of the DLT proposed by Revuelta (2005). In this 

paper we present the parameterization of the DM and an application of the DM to a real 

data set and provide concluding remarks.  

The Distractor Model 

The development of the DM begins by establishing an explicit model for P(Yj = 

k|θ, Yj = k, m), similar to the development of the NRM (see Equation 2). Note that this 

contrasts the development of the DLT, which is based on parameterizing the odds of Yj = 

k given the choice between options k and m (see Equation 4). The DM is based on the 

assumption that the probability of selecting the kth distractor, given that the response is 

either the kth distractor (Yj = k, k m≠ ) or the correct option (Yj = m), can be modeled 

using the parametric form 
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where D is a constant equaling 1.7, *
jk jk jma a a= − , *

jk jk jmb b b= − , and *
jk jk jmc c c= −  . 

Equation 4 specifies the kth contrast function of the DM. There will be m – 1 contrast 

functions, one for each of the m -1 distractors. The constant D is included so that the 
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contrast functions underlying the DM are similar in form to the three-parameter logistic 

model, thus allowing the parameters of the DM contrast functions to be interpreted in a 

similar fashion as those of widely used dichotomous response models. The nature of the 

contrast function in Equation 6 is similar to the NRM, with the addition of the (1 – cjk) 

term. As a result, the DM is founded on a theory and parameterization that is consistent 

with the NRM as opposed to the DLT, which is founded on the distractor selection ratio 

of Equation 4. 

The constraints placed on the parameters of the DM are as follows: ajm = bjm = cjm 

= 0. Hence, Equation 6 can be written as 
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The discrimination of option k , jka , is assumed to be negative in value causing the kth 

contrast function to be monotonically decreasing, thus indicating that the probability of 

selecting the kth distractor (given the selection of either the correct response of the kth 

distractor) decreases with θ. The steepness of this decrease is determined by the ajk 

parameter, the location of the function is determined by the bjk parameter, and the upper 

asymptote of this function is equal to 1-cjk. The kth contrast function described in 

Equation 7 has a resemblance to the three-parameter logistic IRT model (Lord, 1980) 

commonly employed for dichotomously scored items. The distinction between Equation 

7 and the three-parameter logistic model resides in the use of the c-parameter; in 

Equation 7, 1-cjk corresponds to the upper asymptote of the kth contrast function, whereas 

the c-parameter of the three-parameter logistic model corresponds to the lower asymptote 

of correct response.  
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The unique property of the DM resides in how we conceptualize the contrast 

function for an individual with an arbitrarily low value of ability. If we can assume that 

the response of this individual (with an arbitrarily low value of θ) was the result of some 

level of guessing, then the probability of selecting the kth distractor given the selection of 

either the correct option or the kth distractor is expected to be less than unity. That is, an 

individual with a very low level of θ will not have a zero probability of selecting the 

correct response – the correct response can be attained through chance (i.e. guessing). In 

the case of complete random guessing, the probability of selecting the correct option 

given the choice between the correct option and the kth distractor would be on the order 

of .5 (a probability of .5 of selecting the correct option and a probability of .5 of selecting 

the kth distractor). A distractor that had particularly attractive features for individuals 

with low levels of θ (in relation to the correct option), or that was particularly misleading, 

could have a contrast function with cjk < .5. This is where the DM differs from the NRM 

– the NRM assumes that P(Yj = m|θ, Yj = k, m) approaches zero as θ  becomes arbitrarily 

low, while the DM assumes that P(Yj = m|θ, Yj = k, m) approaches cjk as θ  becomes 

arbitrarily low.  Indeed, the NRM is equal to the DM for which cjk = 0 for all k, a 

relationship that is described in greater detail below.  

Figure 1 illustrates the contrast functions of the DM associated with a 

hypothetical four-option multiple-choice item. Because there are four options, there are 

three contrast functions, labeled CF-1, CF-2, and CF-3. This item has parameters a1 = -

1.5, a2 = -1, a3 = -1, b1 = -1, b2 = 0, b3 = 1, c1 = 0.2, c2 = 0.5, and c3 = 0.3. Based on these 

parameters, we see that CF-1 has the largest a-parameter, indicating that the distinction 

between the correct option and distractor 1 holds the greatest discriminating power 
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between low and high levels of θ. The b-parameter corresponds to the horizontal location 

of the contrast function; CF-3 has the largest value of the b-parameter and thus lies 

furthest to the right. CF-2 has the largest c-parameter (c2 = 0.5), and thus the lowest upper 

asymptote. As a result, when faced with a decision between the correct option and 

distractor 2, respondents with very low levels of θ are responding at random. In contrast, 

CF-1 has a c-parameter value of 0.2, suggesting that distractor 2 is particularly attractive 

(or deceiving) for respondents with very low levels of θ.   

 Based on the contrast function defined in Equation 7, the DM defines the 

conditional probability of selecting the kth response option using 
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The constraints placed on the parameters of the DM are as follows: ajm = bjm = cjm = 0. 

The DM has 3(m – 1) free parameters, which is more than that of the NRM, equal to that 

of the DLT, and fewer than that of the Thissen and Steinberg’s (1984) MCM. It is also 

relevant to note that when cjk = 0 for k = 1, 2, …, m - 1, wjk reduces to 

[ ])(exp jkjkjk bDaw −= θ ,    (10) 

which leads the DM to be equivalent to a rescaled version of the NRM in which the *
jkb  

parameter of the NRM is equivalent to Dajkbjk in Equation 10 and the *
jka  parameter of 
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the NRM is equivalent to Dajk in Equation 10. That is, under the condition of cjk = 0 for 

all distractors the DM holds a form that is algebraically equivalent to the NRM. 

A pivotal property of the DM is its relationship to the NRM. Examining the 

contrast functions of the DM (Equation 7) and the NRM (Equation 2) we see that that 

they differ by the factor 1 – cjk. This is analogous to the distinction between the two- and 

three-parameter logistic dichotomous response models. As such, the DM can be 

conceptualized as the three-parameter logistic analog of the NRM. That is, the distinction 

between the DM and the NRM is analogous to the distinction between the three-

parameter and two-parameter logistic dichotomous response models. 

The derivation of the DM is founded on the formulation of the contrast function 

defined in Equation 7. Because the kth contrast function represents P(Yj = k|Yj = k, m), 

which is equal to P(Yj = k|θ)/[P(Yj = k|θ) + P(Yj = m|θ)], it follows that 
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Isolating P(Yj = k|θ) on the left side of the equation yields the following form for 
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It must be the case that, conditional on θ, the sum of the probability of the correct 

response and each of the m – 1 distractors is equal to unity. As a result, the probability of 

correct response can be expressed as 
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Isolating the term for P(Yj = m|θ) on the left side yields the following  
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Substituting the result of Equation 15 into Equation 12 yields the form for P(Yj = k|θ), 

given by 
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Assuming that the constraint of ajm = bjm = cjm = 0 has been imposed, the form of the DM 

shown in Equation 8 can be used to specify the conditional probability of the kth response 

option, for k = 1, 2, …, m. 

 Although not immediately apparent from Equation 16 and the previous equations 

presenting the derivation of the DM, the DM can be shown to be a reparameterization of 

the DLT. In particular, the Revuelta’s (2005) presentation of the DLT asserts that (see 

Equation 4) 

   [ ])exp(1
)|(

)|(
)( �ab

�kYP

�mYP
jkjk

jk

jm

j

j
k ++=

=
=

=
π
π

θψ . 

Under the DM, �k(�) can be expressed by 

  
[ ]
[ ])(exp)1(

)(exp1
)( 1

jkjkjk

jkjkjk
kk

bDac

bDac
w

−−

−+
== −

θ

θ
θψ      



The Distractor Model 15 

   
[ ]

jk

jkjkjk

c

bDac

−
−−+

=
1

)(exp θ
 

   [ ]( ))(exp1
1

1
jkjkjk

jk

jk bDac
c

c
−−+

−
= − θ .   (17) 

Letting vjk = bjk + log(cjk)(Daj)-1, �k under the DM can be expressed as 
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which is equivalent in form to �k(�) under the DLT (see Equation 4). As a result, the DM 

can be expressed as the DLT when the following transformations are imposed on the DM 

parameterization 
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 An appealing property of the DM is the interpretability of the guessing parameters 

(cjk) with respect to the contrast functions. A value cjk = 0.5 for all k corresponds to the 

situation of item responses being determined purely by random guessing for individuals 

with very low levels of θ. In this situation P(Yj = k|θ) � P(Yj = m|θ) for all k, regardless of 
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θ. A value of cjk < 0.5 for the kth distractor provides evidence that the distractor is an 

attractive option relative to the correct response for individuals with arbitrarily low levels 

of θ. Similarly, a value of cjk > 0.5 for the kth distractor provides evidence that the 

distractor is not an attractive option relative to the correct response for individuals with 

arbitrarily low levels of θ, in which case the correct option may contain information or 

properties that is making it an appealing choice for individuals with very low levels of θ. 

 An additional appealing property of the DM corresponds to the form of the 

probability of selecting the correct response, given the choice between the correct 

response and the kth distractor. This form is given by 
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where jkjk aa −=′ . The form shown in Equation 20 is the familiar three-parameter logistic 

model commonly employed for dichotomously scored items. As a result, under the DM 

the probability of correct response given the choice between the correct option or the kth 

distractor follows the three-parameter logistic model commonly employed for 

dichotomously scored items. 

 Figure 2 presents the option characteristic curves (OCCs) of the DM associated 

with a hypothetical four-option multiple-choice item for which the first three options 

correspond to distractors and the fourth option is the correct option. The DM parameters 

for this item are a1 = -1.5, a2 = -1, a3 = -1, b1 = -1, b2 = 0, b3 = 1, c1 = 0.2, c2 = 0.5, and c3 

= 0.3. Note that this is the same hypothetical item for which the contrast functions are 

displayed in Figure 1. The shape of the OCCs indicates that distractor 3 is particularly 

attractive for respondents having moderate levels of θ and distractor 1 is particularly 

attractive for respondents having low levels of θ. The ordering of these two distractors 

(i.e., distractor 3 is attractive for respondents at higher levels of θ than is distractor 1) is 

attributable to the larger value of the b-parameter for distractor 3 (b3 = 1) than for 

distractor 1 (b1 = -1). Distractor 2 is relatively unattractive for respondents of all levels of 

θ, which is attributable to its relatively low value of the a-parameter (a2 = -1) and the 

high-value of the c-parameter (c2 = 0.5). For very low values of θ distractor 1 is a highly 

attractive option, which is attributable to its relatively low value of c (c1 = 0.2). In 

contrast, distractor 2 has a low probability of being selected by individuals with a very 

low value of θ, due to its high value of c (c2 = 0.5). 
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Parameter Estimation for the Distractor Model 

As in most IRT models, estimates of the DM parameters can be obtained using 

marginalized maximum likelihood estimation (MMLE; Bock & Aitkin, 1981). 

Alternatively, as Patz and Junker (1999a, 1999b) have shown, IRT model parameters can 

also be estimated using Markov chain Monte Carlo (MCMC) methods. Although 

computationally more intensive, the latter approach is easier to implement primarily 

because it does not require the first and second order derivatives to arrive at the solution.  

For estimation purposes, the model is parameterized as follows: 

  ~ (0,1)i Nθ , 

~ (0.5,2.0)Ujka , 

~ ( 3.0,3.0)Ujkb − , 

~ (0.0,0.5)Ujkc , 

                                     | , , , ~ ( | )jk i jk jk jk j iY a b c P Y kθ θ= , 

where the subscript i refers to the ith respondent. The joint posterior distribution of the 

parameters is 

( , , , | ) ( , , , ) ( ) ( ) ( ) ( )P L P P P P∝θ θ θθ θ θθ θ θθ θ θa b c Y Y | a b c a b c , 

where 
, ,

( , , , ) ( | ) ijkY
j ji j k

L P Y k θ= =∏θθθθY | a b c , ( ) ( )ii
P P θ= ∏θθθθ , 

,
( ) ( )jkj k

P P a= ∏a , 

,
( ) ( )jkj k

P P b= ∏b , 
,

( ) ( )jkj k
P P c= ∏c , and 1ijkY =  if and only if ijY k= . The full 

conditional distributions of θθθθ , a , b  and c  are not known distributions so sampling from 

these distributions requires the use of the Metropolis-Hastings within Gibbs algorithm 

(Casella & George, 1995; Chib & Greenberg, 1995; Gamerman, 1997; Gelman, Carlin, 

Stern, & Rubin, 2003; Gilks, Richardson, & Spiegelhalter, 1996; Tierney, 1994). The 
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means and standard deviations of the draws, averaged across the chains, serve as the 

estimated parameters and standard errors, respectively. 

Model Fit 

 The assessment of model fit for polytomous models is a difficult endeavor in 

general (Drasgow, Levine, Tsien, Williams, & Mead, 1995; Roberts, Donoghue, & 

Laughlin, 2000; Thissen & Steinberg, 1997), and this difficulty applies equally to the 

DM. Chi-square tests of fit become impractical with more than just a few items due to the 

large number of possible response patterns (Bock, 1997; Thissen & Steinberg, 1997). 

Chi-square tests have also been proposed based on creating dyads or triads of items 

(Drasgow et al., 1995), but even these approaches are difficult to implement without large 

sample sizes. In addition, conventional measures of fit based on the mean squared error 

between the observed and expected response are not applicable due to the nominal nature 

of the response variable. 

 One approach for examining fit of polytomous models applied to multiple-choice 

items is to consider diagnostic plots that compare the observed and expected proportion 

selecting each response option within a finite number of points along the latent trait 

continuum (Drasgow et al., 1995). For example, one could segment the latent continuum 

into 12 strata (e.g., -3.00 to -2.50, -2.49 to -2.00, …, 2.50 to 3.00) and within each 

stratum compare the observed proportion selecting each response option to the 

proportions expected under the DM evaluated at the midpoint of the stratum. The 

observed and expected proportion plots can be examined visually to identify particularly 

misfitting items. In addition, the root mean squared error (RMSE) can be computed for 

each option by considering the difference between the observed and expected proportions 
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within each stratum (i.e., computing the mean of the squared differences across the strata, 

and then taking the square root of the obtained mean). The value of the RMSE for each 

option can be used to identify options that are experiencing substantial lack of fit. The 

RMSE also can be computed across all options to yield an item-level index of fit. We 

stress, however, that the resulting RMSE values are not to be confused with a hypothesis 

test of fit, and should be used only as a guide in the examination of fit. 

An Illustrative Example 

 We illustrate the application of the DM using the responses of a random sample of 

2500 students to 20 multiple-choice items of the algebra scale of a mathematics 

placement test of a large Midwestern university (UWCTP, 2006). The entire test 

contained 85 items covering mathematics basics, algebra, and trigonometry. This 

illustration is based on only the first 20 items of the algebra scale. Each item in this 

illustration contained five response options (correct option and four distractors). We used 

only the first 20 items for illustrative purposes. 

 The estimates of the DM parameters, including the ability estimates, were 

obtained using the MCMC algorithm described previously. Four independent chains were 

started at random, and each chain was run for a total of 50000 iterations. A burn-in of 

10000 iterations was used, and only every tenth draw was saved. Using the multivariate 

potential scale reduction factor (Brooks & Gelman, 1998), the convergence statistic was 

computed to be 1.15, indicating that the chains had converged. The means and standard 

deviations of the draws, averaged across the chains, were used as the estimates of the 

parameters and the standard errors, respectively. The code for this algorithm was written 

in Ox (Doornik, 2003), and can be made available by contacting the authors. 
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 The estimated item parameters, and their associated standard error estimates, are 

presented in Table 1. Options 1 to 4 correspond to distractors and option 5 corresponds to 

the correct response. Of particular interest are the values of the c-parameter estimates. 

Across all 20 items, the c-parameter estimates ranged between 0.13 (c4 of Item 14) and 

0.49 (c4 of Item 17). Typically, the c-parameter estimates ranged between 0.20 and 0.45, 

with the mean and standard deviation across all 20 items of 0.32 and 0.08, respectively. 

The mean and standard deviation of each of the a-, b-, and c-parameters taken across all 

20 items are displayed in Table 2. 

 To gain a better understanding of the relationship between the estimated item 

parameters and the form of the DM, the OCCs were plotted for several of the test items. 

Figure 3 displays the OCCs for Item 6. Of particular interest for Item 6 is distractor 3, 

which displayed a relatively high probability of selection for the θ range of -1 to -3. The 

relatively high probability associated with distractor 3 in the θ  range of -1 to -3 is 

attributable to the relatively high discrimination of the third contrast function (a3 = -1.18) 

coupled with the location of the third contrast function (b3 = -0.79) that sits far to the 

right of the other contrast functions. In addition, the relatively low value of the c-

parameter for the third contrast function (c3 = 0.22) leads the probability of selecting the 

third distractor to be above that of the other options at the lower levels of θ.   

Figure 4 displays the OCCs for Item 11. For this item, distractor 1 had a relatively 

high probability of selection in the θ  range of -2 to -1, which is attributable to the 

relatively high a- and b-parameters of the first contrast function (a1 = -1.12 and b1 = -

0.33). Also of interest is that distractor 3 reached a relatively high probability of selection 
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at the very low levels of θ, which is attributable to the relatively low value of the c-

parameter (c3 = 0.20).   

Figure 5 displays the OCCs for Item 19, a relatively difficult item for which the 

OCCs of the four distractors were determined largely by the c-parameters of their 

respective contrast functions. In particular, for θ < 0, the ordering of the probability of 

selection for the four distractors is inversely related to the c-parameter of the associated 

contrast function: distractor 2 has the highest probability of selection and c2 = 0.19, 

distractor 3 has the second highest probability of selection and c3 = 0.22, distractor 1 has 

the third highest probability of selection and c1 = 0.27, and distractor 4 has the lowest 

probability of selection (of the distractors) and c4 = 0.41. This item clearly illustrates the 

utility of the c-parameter in the DM, and how the c-parameter is inversely related to the 

probability of selection as θ becomes arbitrarily low. 

Fit was examined by comparing the observed and expected proportion selecting 

each response option within ten intervals along the latent continuum. The latent 

continuum was placed on a standard metric (one logit equaled one unit on the latent 

metric), and the ten intervals were 0.5 logits in length beginning at -2.5 and extending to 

2.5 (i.e., -2.50 to -2.01, -2.00 to -1.51, …., 2.00 to 2.50). At the midpoint of each of the 

ten intervals the expected proportion selecting each response option for the item in 

question was computed, and compared to the observed proportions for the respondents in 

the respective interval. The mean squared error for each response option was computed 

by summing the squared differences between the expected and observed proportions, and 

the RMSE for each response option was obtained by taking the square root of the mean 

squared error. To obtain an index of fit across all response options, an aggregated RMSE 
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value was computed by considering the summated squared differences across all five 

response options.  

Upon examination of the data, only six observations were located in the lowest 

interval (-2.5 to -2.01), and thus this interval was excluded from the computation of the 

RMSE values. Table 2 displays the resulting values of RMSE for each response option, 

and aggregated across all response options. The RMSE values were typically less than 

0.05 for each distractor, providing evidence of relatively good fit. The values of RMSE 

for the correct option tended to be slightly larger than those of the distractors, which is 

likely attributable to the larger scale of the correct response; the correct response spans 

probabilities from near zero to near unity, while the distractors typically span 

probabilities from near zero to less than .5. The values of the aggregated RMSE taken 

across all response options ranged between 0.018 and 0.043, which provides further 

evidence of relatively good fit of the model to the data. 

In addition to the RMSE values shown in Table 2, fit plots (plots of the expected 

and observed proportion selecting each response option within each stratum) were 

constructed for each item. The fit plots were visually inspected to identify items 

displaying substantial lack of fit. Upon visual inspection of the fit plots, no items were 

flagged as having substantial lack of fit. 

Discussion 

 In this paper we proposed the distractor model (DM), an adaptation of Revuelta’s 

(2005) DLT response model for multiple-choice items. The advantageous features of the 

DM include: (a) the DM uses a parameterization that is consistent with that of the NRM; 

(b) the DM uses fewer parameters than Thissen and Steinberg’s (1984) multiple-choice 
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response model; (c) the DM is based on contrast functions that are parameterized 

according to a three-parameter logistic model that is similar to that commonly employed 

for dichotomously scored items, and thus is based on a theory and form that is pervasive 

in the IRT literature. The DM was applied to a 20-item test of multiple-choice items, and 

the fit of the data to the DM was deemed good through visual inspection of fit plots. 

These results suggest that the DM holds promise to being a viable alternative for 

modeling multiple-choice item responses. 

 Adding the DM to the family of polytomous models appropriate for multiple-

choice item formats can serve several advantageous functions. First, the DM is based on 

different model assumptions than the NRM and the MCM. In particular, the DM asserts 

that each contrast function follows a three-parameter logistic form, which distinguishes it 

from the NRM and the MCM. As a result, the DM offers a novel way to conceptualize, 

model, and interpret responses to multiple-choice items. Second, because the assumptions 

underlying the DM are different than those of the NRM and MCM, it offers an alternative 

model to simulate responses to multiple-choice items. Being able to simulate data using a 

variety of plausible models is a useful property of simulation studies evaluating models 

for multiple-choice items.  

 While the DM incorporates a theory and parameterization for guessing in 

multiple-choice items, additional research is required to evaluate whether the DM 

provides better fit to multiple-choice item responses than other polytomous models such 

as the NRM and the MCM. Previous research (Drasgow et al., 1995) found modest 

differences in the fit of NRM and the MCM to multiple-choice items, and additional 

research is required to evaluate whether the fit of the DM to real data is comparable to 
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that of the MCM and NRM. In addition, a comparison of the stability of the DM 

parameter estimates to those of the MCM and NRM would be important in shedding light 

on which model holds the greatest value across a range a conditions.  
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Table 1 
Item Parameter Estimates and Estimated Standard Errors 

 
Item 

 
a1 

 
a2 

 
a3 

 
a4 

 
b1 

 
b2 

 
b3 

 
b4 

 
c1 

 
c2 

 
c3 

 
c4 

1 -0.57 
(0.05) 

-0.81 
(0.10) 

-1.14 
(0.15) 

-0.52 
(0.02) 

-2.57 
(0.27) 

-1.90 
(0.30) 

-0.35 
(0.14) 

-0.75 
(0.14) 

0.32 
(0.12) 

0.26 
(0.14) 

0.46 
(0.04) 

0.47 
(0.03) 

2 -1.78 
(0.15) 

-1.15 
(0.13) 

-1.05 
(0.13) 

-1.37 
(0.20) 

-0.29 
(0.08) 

-0.23 
(0.11) 

-1.39 
(0.24) 

-0.64 
(0.15) 

0.35 
(0.05) 

0.21 
(0.06) 

0.23 
(0.13) 

0.44 
(0.06) 

3 -0.57 
(0.06) 

-1.02 
(0.14) 

-1.01 
(0.14) 

-0.83 
(0.12) 

-0.33 
(0.29) 

-0.98 
(0.22) 

-0.50 
(0.20) 

-1.38 
(0.32) 

0.40 
(0.08) 

0.40 
(0.09) 

0.43 
(0.07) 

0.37 
(0.12) 

4 -1.48 
(0.21) 

-1.53 
(0.18) 

-1.63 
(0.19) 

-0.66 
(0.11) 

-0.06 
(0.11) 

-0.22 
(0.10) 

-0.11 
(0.10) 

0.35 
(0.24) 

0.45 
(0.04) 

0.29 
(0.05) 

0.32 
(0.05) 

0.31 
(0.07) 

5 -0.84 
(0.14) 

-0.98 
(0.15) 

-0.78 
(0.13) 

-0.65 
(0.10) 

-0.16 
(0.23) 

-0.19 
(0.20) 

-0.33 
(0.29) 

0.12 
(0.27) 

0.24 
(0.09) 

0.30 
(0.08) 

0.40 
(0.09) 

0.41 
(0.07) 

6 -1.47 
(0.24) 

-1.06 
(0.13) 

-1.18 
(0.13) 

-0.81 
(0.11) 

-2.06 
(0.25) 

-1.36 
(0.22) 

-0.79 
(0.16) 

-2.10 
(0.31) 

0.29 
(0.14) 

0.29 
(0.13) 

0.22 
(0.09) 

0.24 
(0.14) 

7 -0.94 
(0.16) 

-1.47 
(0.19) 

-1.21 
(0.17) 

-0.72 
(0.09) 

-0.46 
(0.31) 

-0.42 
(0.12) 

-1.07 
(0.21) 

-0.17 
(0.21) 

0.36 
(0.12) 

0.27 
(0.07) 

0.30 
(0.12) 

0.18 
(0.08) 

8 -0.80 
(0.11) 

-1.16 
(0.15) 

-0.80 
(0.13) 

-0.80 
(0.13) 

-0.61 
(0.24) 

0.20 
(0.10) 

-0.83 
(0.33) 

0.15 
(0.20) 

0.18 
(0.10) 

0.24 
(0.04) 

0.33 
(0.12) 

0.46 
(0.05) 

9 -1.19 
(0.18) 

-0.65 
(0.08) 

-0.77 
(0.10) 

-0.87 
(0.12) 

-0.49 
(0.20) 

-1.69 
(0.36) 

-1.28 
(0.30) 

-0.51 
(0.23) 

0.35 
(0.09) 

0.24 
(0.15) 

0.38 
(0.11) 

0.43 
(0.07) 

10 -1.30 
(0.18) 

-1.05 
(0.13) 

-1.78 
(0.15) 

-1.10 
(0.15) 

-0.90 
(0.19) 

-1.05 
(0.23) 

-0.83 
(0.09) 

-1.39 
(0.25) 

0.38 
(0.10) 

0.29 
(0.12) 

0.44 
(0.05) 

0.36 
(0.12) 

11 -1.12 
(0.13) 

-0.70 
(0.09) 

-0.71 
(0.09) 

-1.14 
(0.16) 

-0.33 
(0.12) 

-2.14 
(0.33) 

-0.91 
(0.29) 

-0.96 
(0.20) 

0.23 
(0.06) 

0.26 
(0.14) 

0.20 
(0.12) 

0.44 
(0.07) 

12 -0.58 
(0.05) 

-0.91 
(0.11) 

-0.85 
(0.11) 

-1.13 
(0.13) 

-2.26 
(0.32) 

-1.55 
(0.27) 

-1.06 
(0.28) 

-0.73 
(0.16) 

0.26 
(0.14) 

0.28 
(0.13) 

0.37 
(0.11) 

0.42 
(0.07) 

13 -0.70 
(0.08) 

-0.87 
(0.12) 

-1.16 
(0.15) 

-0.66 
(0.09) 

-1.67 
(0.33) 

-1.13 
(0.30) 

-0.55 
(0.14) 

-2.11 
(0.37) 

0.29 
(0.14) 

0.34 
(0.13) 

0.45 
(0.05) 

0.32 
(0.14) 

14 -1.41 
(0.20) 

-1.81 
(0.13) 

-1.35 
(0.20) 

-0.98 
(0.10) 

-0.60 
(0.17) 

-0.52 
(0.09) 

-0.55 
(0.18) 

-0.35 
(0.12) 

0.31 
(0.10) 

0.31 
(0.06) 

0.36 
(0.09) 

0.13 
(0.06) 

15 -1.22 
(0.15) 

-0.55 
(0.04) 

-1.11 
(0.25) 

-0.60 
(0.08) 

0.75 
(0.08) 

0.32 
(0.25) 

1.07 
(0.14) 

-0.21 
(0.24) 

0.28 
(0.02) 

0.44 
(0.05) 

0.46 
(0.03) 

0.45 
(0.05) 

16 -0.86 
(0.15) 

-0.67 
(0.09) 

-0.77 
(0.12) 

-0.65 
(0.08) 

0.52 
(0.16) 

-1.75 
(0.38) 

-2.29 
(0.35) 

-1.53 
(0.35) 

0.29 
(0.06) 

0.31 
(0.14) 

0.31 
(0.13) 

0.32 
(0.13) 

17 -0.52 
(0.02) 

-0.69 
(0.08) 

-0.84 
(0.10) 

-0.51 
(0.01) 

-2.22 
(0.27) 

-1.49 
(0.33) 

-1.07 
(0.24) 

0.11 
(0.13) 

0.38 
(0.10) 

0.24 
(0.14) 

0.21 
(0.11) 

0.49 
(0.01) 

18 -0.87 
(0.12) 

-0.75 
(0.11) 

-0.85 
(0.14) 

-0.73 
(0.10) 

-0.90 
(0.27) 

-0.54 
(0.28) 

-0.32 
(0.27) 

-2.47 
(0.31) 

0.37 
(0.11) 

0.24 
(0.11) 

0.33 
(0.10) 

0.27 
(0.14) 

19 -1.17 
(0.17) 

-1.81 
(0.13) 

-1.38 
(0.19) 

-1.36 
(0.23) 

0.07 
(0.14) 

0.41 
(0.05) 

0.59 
(0.08) 

0.11 
(0.15) 

0.27 
(0.06) 

0.19 
(0.02) 

0.22 
(0.03) 

0.41 
(0.06) 

20 -0.69 
(0.11) 

-0.76 
(0.10) 

-1.00 
(0.14) 

-1.02 
(0.14) 

-0.26 
(0.28) 

-1.30 
(0.31) 

-0.20 
(0.18) 

-0.70 
(0.21) 

0.23 
(0.10) 

0.25 
(0.14) 

0.31 
(0.07) 

0.41 
(0.08) 

Note. Values in parentheses correspond to the estimated standard error of the parameter estimate. 
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Table 2 
Mean and Standard Deviation of the Item Parameter Estimates 

 
 

 
a1 

 
a2 

 
a3 

 
a4 

 
b1 

 
b2 

 
b3 

 
b4 

 
c1 

 
c2 

 
c3 

 
c4 

Mean 1.00 1.02 1.07 0.85 -0.74 -0.88 -0.64 -0.76 0.31 0.28 0.34 0.37 

SD 0.36 0.37 0.30 0.26 0.94 0.77 0.71 0.83 0.07 0.06 0.09 0.10 
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Table 3 
RMSE Values for Each Response Option 

  
Response Option 

 

 
Item 

 
1 

 
2 

 
3 

 
4 

 
5 

 
Aggregated 

1 0.032 0.038 0.010 0.047 0.045 0.037 
2 0.015 0.031 0.047 0.009 0.022 0.028 
3 0.027 0.010 0.028 0.015 0.030 0.024 
4 0.013 0.022 0.014 0.027 0.033 0.023 
5 0.027 0.018 0.016 0.023 0.047 0.029 
6 0.025 0.019 0.025 0.016 0.050 0.030 
7 0.015 0.012 0.023 0.031 0.042 0.027 
8 0.028 0.032 0.017 0.026 0.033 0.028 
9 0.012 0.016 0.013 0.015 0.042 0.022 
10 0.011 0.019 0.009 0.005 0.033 0.018 
11 0.021 0.011 0.036 0.019 0.047 0.030 
12 0.020 0.027 0.011 0.031 0.027 0.024 
13 0.015 0.015 0.016 0.013 0.041 0.023 
14 0.043 0.038 0.018 0.039 0.034 0.035 
15 0.029 0.050 0.027 0.021 0.068 0.043 
16 0.034 0.007 0.019 0.033 0.050 0.032 
17 0.016 0.017 0.036 0.053 0.068 0.043 
18 0.015 0.028 0.023 0.010 0.041 0.026 
19 0.016 0.020 0.034 0.012 0.035 0.025 
20 0.056 0.014 0.019 0.012 0.051 0.036 
Note. Response options 1, 2, 3, and 4 correspond to distractors. Option 5 is the correct 
response. The aggregated column corresponds to the RMSE aggregated across all five 
response options. 
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Figure 1 

Contrast Functions for a Hypothetical Four-Option Multiple-Choice Item Parameterized 

According to the DM 
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Note. The three contrast functions are labeled CF-1 (contrasts distractor 1 and the correct 

option), CF-2 (contrasts distractor 2 and the correct option), and CF-3 (contrasts 

distractor 3 and the correct option). The three contrast functions have parameters: a1 = -

1.5, a2 = -1, a3 = -1, b1 = -1, b2 = 0, b3 = 1, c1 = 0.2, c2 = 0.5, c3 = 0.3.  
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Figure 2 

Option Characteristic Curves for a Hypothetical Four-Option Multiple-Choice Item 

Parameterized According to the DM 
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Note. The DM parameters are: a1 = -1.5, a2 = -1, a3 = -1, b1 = -1, b2 = 0, b3 = 1, c1 = 0.2, 

c2 = 0.5, c3 = 0.3. Option 4 corresponds to the correct option.  
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Figure 3 

Option Characteristic Curves for Item 6 of the Algebra Test 
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Note. The DM parameters are: a1 = -1.47, a2 = -1.06, a3 = -1.18, a4 = -0.81,  b1 = -2.06, b2 

= -1.36, b3 = -0.79, b4 = -2.10, c1 = 0.29, c2 = 0.29, c3 = 0.22, c4 = 0.24. Option 5 

corresponds to the correct option.  
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Figure 4 

Option Characteristic Curves for Item 11 of the Algebra Test 
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Note. The DM parameters are: a1 = -1.12, a2 = -0.70, a3 = -0.71, a4 = -1.14,  b1 = -0.33, b2 

= -2.14, b3 = -0.91, b4 = -0.96, c1 = 0.23, c2 = 0.26, c3 = 0.20, c4 = 0.44. Option 5 

corresponds to the correct option.  
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Figure 5 

Option Characteristic Curves for Item 19 of the Algebra Test 
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Note. The DM parameters are: a1 = -1.17, a2 = -1.81, a3 = -1.38, a4 = -1.36,  b1 = 0.07, b2 

= 0.41, b3 = 0.59, b4 = 0.11, c1 = 0.27, c2 = 0.19, c3 = 0.22, c4 = 0.41. Option 5 

corresponds to the correct option.  

 


